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Liquid markets and market liquids
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Abstract. We characterize the collective phenomena of a liquid market. By interpreting the behavior of
a no–arbitrage N asset market in terms of a particle system scenario, (thermo)dynamical–like properties
can be extracted from the asset kinetics. In this scheme the mechanisms of the particle interaction can be
widely investigated. We test the verisimilitude of our construction on two–decade stock market daily data
(DAX30) and show the result obtained for the interaction potential among asset pairs.

PACS. 02.50.Sk Multivariate analysis – 89.90.+n Other topics in areas of applied and interdisciplinary
physics

Since the late 80s, with the introduction of electronic trad-
ing, huge quantities of financial data became available (or
at least on sale) for both investment and research analy-
ses. Quite unusually outside the natural science panorama,
this novelty opened the way to test the reliability of theo-
ries and conjectures about the behavior of financial mar-
kets. One of them, a paradigm for financial mathematics,
is the random character of markets [1], that is unpre-
dictability. It has recently been proved, nevertheless, that
a certain degree of correlation is still present on ex-
tremely short time scales [2]. Despite that, the interme-
diate scales are dominated by random behavior with Lévy
stable statistics of asset returns [3]. The possibility to ex-
tract information on the future evolution of a single as-
set by knowing a big enough ensemble of its past values
matters indeed to institutional traders, who can generally
intervene on the market in real time (with delays of few
seconds or less). Their presence reduces at minimum time
correlations and consequently speculation possibilities.

Time dependence is however only one possible domain
for surveying similar patterns inside financial signals. The
other domain for correlation detection, whose exploration
was greatly facilitated by modern computational facilities
is the ‘spatial’ one. In fact, albeit much efforts are spent
in studying correlations in the time dynamics of a single
asset (see [4] and [5] for a digest of the recent physicist
and economist approach, respectively), there are many
applicative and fundamental reasons for understanding
deeply spatial, commonly referred as multivariate, corre-
lations. A financial market is not simply a juxtaposition
of different prices which are organised on an independent
basis, but rather a complex system of interacting con-
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stituents [6]. The latter are then monitored by sampling
single prices with respect to an arbitrary currency. Hence
the study of correlations among different asset time sig-
nals is of peculiar importance. By the way, this is also the
case for many problems involved in modern risk manage-
ment theory, where the composition of a certain portfolio
strongly depends on the movements of different underly-
ing assets. On a more fundamental level, the interesting
issue is the comprehension of how price changes can be
separated, with a sufficient degree of confidence, in single
asset and collective behavior.

Since Markowitz’s work on the theory of optimal port-
folio [7], much effort has been spent to characterize cor-
relation matrices of financial assets [8]. In recent contri-
butions, different physics concepts have been adopted to
endeavor this type of problem, mainly because the study
of correlations represents a paradigm of a wide class of
physical problems for which powerful tools have been de-
veloped. A bivariate analysis of the futures on the German
and Italian bonds showed that despite the perfect uncor-
relation of the single tracks, the crosscorrelation of the two
signals was significantly non zero: the signals considered
described two random, but similar, processes [9]. This be-
havior emerges quite generally in the stock market, where
certain asset clusters ‘move’ in a particularly correlated
way with respect to remaining titles. Using equal time
cross–correlation matrices and several physics–borrowed
tools such as random matrix theory, these conjectures have
been quantified [10]. In a recent study, the structure of an
N stock market has been investigated regarding the mul-
tivariate structure in a global window period [11].

In this paper, we propose a method to investigate asset
correlations by interpreting asset growth rates as observ-
ables of a particle system scenario. This idea is carried out
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by introducing a formal map between the logarithmic re-
turns and the distances among gas particles. The strength
of this analogy resides in the possibility to separate col-
lective motion from single asset dynamics through the in-
vestigation of mutual interactions among titles. Wielded
by the theory of liquids, we can study the thermodynam-
ics of the system and interpret its temperature as a mea-
sure of spatial volatility, as compared with the more famil-
iar (temporal) volatility. The 2–asset interacting potential
is then calculated on the isothermal (isovolatile) market.
In the remainder of this paper a time dependent asset–
distance and a moving frame model are introduced. The
implementation of this scheme is performed on daily stock
market data taken among the 30 most capitalized titles
forming the Deutscher Aktien indeX (DAX30) in the pe-
riod 30 Dec 1987 to 7 Mar 1995 (1800 trading days). To
maintain a continuity of quotation, we have selected the
maximal subset of 23 assets which, in the above mentioned
period, remained in the DAX30 basket and did not split.
Our discussion and comments conclude the paper.

As a general starting point, we consider a collection
of assets, which is a suitable subpart of titles in a stock
market (better if one representative for every economic
sector), a collection of currency prices, or any combination
of them. The value of asset Ωi at time t is expressed in
unity of asset Ωj by means of conversion factors Pij(t):

Ωi(t) = Pij(t)Ωj(t). (1)

The indices i and j span all N considered assets forming
the market. By writing equation (1) for another couple
of indices, a no–arbitrage equation for a liquid market is
obtained Pij = PikPkj . Its multiplicative symmetry is re-
flected in a corresponding additive symmetry of the loga-
rithmic returns

dαij(t) =
1
τα

log
(

Pij(t)
Pij (t− τα)

)
, (2)

where τα≤H is a collection of H time horizons. The rescal-
ing of the log–returns to the considered time horizon is
solicited by their interpretation; in the idealized limit of
prices with (deterministic) growth laws, we get Pij(t) ∝
exp (dijt), so that the quantity defined in equation (2)
turns out to be the growth rate between asset i and j,
independently on the time horizon. The latter can be con-
sidered as a long term limit when one refers – for example
– to prices of stocks with respect to currencies. In the op-
posite limit of extremely small returns (which eventually
corresponds to short time lags), dα is the rate of the ab-
solute return, d = ∆P/(P∆t), obtained by logarithmic
expansion.

As equation (2) points out, the construction of the H
dimensional variable dij , gives a natural embedding for a
dynamical system oriented analysis [12]. This is not diffi-
cult to understand when thinking that the log–return on
a certain time horizon τ∗ is proportional to the average
of log–returns on sub–multiples of τ∗. Thus the compo-
nent dα

∗
can be written as a linear combination of de-

layed components dα<α
∗
. The no–arbitrage symmetry of

the log–returns hints for the further identification of dij

as an (oriented) distance vector between asset i and j; in
fact (a) dii ≡ 0, (b) dij = −dji, (c) dij = dik + dkj .
It is easy to see that any norm in an H dimensional Eu-
clidean space (in the present work we choose the canon-
ical one) induces a well defined distance1 ‖dij‖ between
asset i and asset j. As an intrinsic character of financial
markets, no asset can be regarded a priori as an absolute
quantity; that is why we ended up only with mutual dis-
tances among asset. Nevertheless some truly single asset
property can be extracted by the symmetry of the prob-
lem and interpreted consequently. The matrix dij is skew
symmetric, ergo diagonalizable; its spectrum is entirely on
the imaginary axe [13]. One of its three different eigenval-
ues is zero and the corresponding eigenspace is orthogonal
to −→1 = (1,1, . . . ,1)t and −→x = (x1,x2, . . . ,xN )t, where

xi ≡
1
N

N∑
j=1

dij ; (3)

here the arrows indicate super–vectors (vectors in an
H ×N space). The two remaining eigenvalues are ±iNσ,
corresponding to the eigenvectors −→1 ∓ i−→x /σ, where

σ ≡ 1
N

√ ∑
1≤i<j≤N

‖dij‖2. (4)

In particular, let us observe that xi−xj = dij , to say that
we have introduced a frame in which every single asset is
assigned to an absolute position: the problem of the be-
havior of the N assets of the market is now translated to
a physical problem of N interacting particles (a liquid) in
H dimensions, with coordinates x1,x2, . . . ,xN . At time
t, xi(t) is the H dimensional position of particle i. Note
that, according to its definition, the distance between two
assets is zero when the price of one with respect to the
other remains constant. Furthermore, it is easy to check
that the x vectors are centered, hence the positions xi are
referred to a coordinate frame which attributes a trivial
dynamics to the center of mass of our liquid. From the
financial point of view, it states the closure of our system:
the N assets are watched as complementary, with zero
overall return. This does not mean that the applicability
of the present construction is restricted to those market
where this property is nearly fulfilled (as an example in
the foreign exchange). In stock markets, which experience
escape and retention events, i.e. positive and negative re-
turn periods, the x are automatically selected within a
neutral frame which keeps track of the particle cloud. Of
course nothing prevents from starting the analysis of an
extended market with a huge number of constituent assets.
Some of them would follow similar dynamics by evolving
in a closer cluster with respect to others. This could help
in order to reduce N to a lower number without losing the
basic features of the liquid behavior [14].

Coming back to the map construction, it is easy to
show that as a consequence of the centered character of

1 Here the three distance–defining axioms are obtained sim-
ply by properties a–c
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Fig. 1. Time dependence of the correlated volatility σ, and
the temperatures T (shifted as a visual aid) relative to the x–
and r–coordinates (a); the corresponding PDFs are in panel b.
All the calculations refer to four horizons (H = 4) of 1, 5, 20,
and 250 market days.

the x coordinates, σ is exactly their standard deviation.
Its Hth power is a measure of the volume of our system.
The financial counterpart of it is what we call correlated
volatility, so to stress that it is a quantity merely con-
nected to the spatial interactions of the particles at a cer-
tain time. As the usual volatility takes into account the
temporal variability of an analyzed fixed asset, we are here
referring to a measure of a spatial variability of a group
of interacting assets at a fixed time. Moreover, even after
the compensation of the split discontinuities, the corre-
lated volatility shows clusterization around bubble and
crash periods [14].

We take now advantage of the structure of the eigen-
vectors of the distance matrix and rescale the x coordi-
nates to volume renormalized ones, ri ≡ xi/σ, their dif-
ference is accordingly ri−rj = dij/σ, so that the two non
trivial eigenvectors are indeed−→1 ∓i−→r . The r–frame, being
the solution of the eigenvalue problem for the distance ma-
trix, is a volume preserving frame. Once the volume of the
system is stabilized, one may wonder which is the depen-
dence of the liquid temperature on time. Thus, by analyz-
ing the empirical behavior of the ensemble averaged square
(finite difference) velocities vi(t) = (ri(t)− ri(t− τ1))/τ1,
we found that the r–system is thermostated at a fix tem-
perature T =

〈〈
v2
i (t)

〉
i

〉
t
/H; the correlated volatility is

therefore a measure of the temperature of our system.
Figure 1 shows this fact: in panel (b), we plot the time
dependence of the correlated volatility σ and of the tem-
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Fig. 2. Masses mi as calculated after equation (5) versus
the asset label [15]. Crosses indicate x–frame calculations with
mean 1.195, circles the r–frames with mean 1.184.

peratures T [x] and T [r] calculated by averaging the square
velocities in the x– and r–frame, respectively. In order to
contrast the results, the time averages of σ and T [x] are
rescaled to T (the time average of T [r]). The scale of T
is in fact fixed by the underlying assumption of a unit
Boltzmann constant. To check possible ergodicity proper-
ties of the system we have also analyzed the time averaged
square velocities of the single assets and extracted mass
terms from them:

mi =
HT

〈v2
i (t)〉t

· (5)

Figure 2 shows that the masses are only slightly affected
by the reference frame used to calculate them. This in-
dicates that they are an intrinsic property of the asset
regardless of the kinetics details. To prove this statement,
we have plotted, in Figure 1, the correction to the tem-
perature due to the asset masses Tm[r] =

〈
miv

2
i (t)

〉
i
/H.

In order to investigate the nature of the interaction of the
particle system under study, we have calculated the two
point correlation function [16]

g(r) =
2

N(N − 1)

∑
i<j

〈δ (r − ‖ri(t)− rj(t)‖)〉t ,

and the related pair potential u(r) ∝ − log g(r). In
Figure 3, the potential u(r) is shown. The great distance
tail of u(r) is linear (correlation coefficient= 0.9994, for
a regression in the region 2 < r < 4 over 446 points
giving the line u = ar + b, with a = 0.689 ± 0.001 and
b = −1.101± 0.004), indicating the strong long range at-
traction of the market liquid. On the other hand at small
distances two different behaviors emerge. By decreasing
the asset–asset distance an equilibrium point is reached.
At smaller distances a barrier is present, followed by a
region corresponding to less intense repulsive forces. We
interpret it as a signature of the inhomogeneity of the
system, which allows at small distances the formation of
privileged pairs (clusters). As a consequence, we expect
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Fig. 3. Plot of the pair potential u(r) for the whole data set
over four horizons (H = 4) of 1, 5, 20, and 250 market days
(a), and the time distribution of the inter–asset distances.

that in a wider market (here we consider the quite diver-
sified but small pool of the DAX30 assets) this tendency
could even be more pronounced.

To conclude, we have introduced an interpretation
scheme for the returns of a N asset market. Here, the
validity of a no–arbitrage condition is guaranteed by the
assumed liquid character of the market. By implement-
ing the embedding, naturally prompted by the structure
of the returns, we have been able to map the financial
signals in positions of particles of an interacting fluid (a
liquid). Therefore, by the only means of the geometrical
construction, we have given purport to the eigenvalues
and eigenvectors of the distance matrix diagonalization
problem as the correlated volatility and thermostated co-
ordinates respectively. One of the strength points of this
method is its easy generalizability to the case of large N ,
albeit here we have restricted our analysis to a relative
small asset market.

On the other hand a word of caution is needed in a
largeN market. The results presented here share the plain
assumptions of isotropy and homogeneity of the market
liquid. Indeed they should become weaker for very large
and differentiated markets. There, the pair potential in-
troduced here is supposed to maintain the same large–
distance properties (linearity). At low distances (where
clustering emerges), in analogy to what is done in the
study of ionic liquids [17], a generalized pair potential
could be introduced in order to include both anisotropy,
cluster formation, and species diversification: these is-
sues are under investigation and will be published else-

where [14]. Besides, this approach is straightforwardly em-
ployable for time dependent clustering. A procedure simi-
lar to the one adopted to organize static distances between
assets in hierarchy trees, given in reference [11], could be
generalized to the time dependent distance matrix (2).

From the financial perspective, the construction pre-
sented in this paper is following a sort of Æsop’s the fox
and the grapes strategy. It is easy to despise what one
cannot get and in quantitative finance the scarce goods
are the rare events. Since there is no methodology to deal
with misprediction given by the insufficiency of statistics,
we try to wash it out from the dynamics by exploiting the
symmetries of the problem. After all, as we have shown,
the calm (non-bubble, non-crash) side of financial markets
has anyhow a lot to say.

The data for the empirical analysis were kindly provided by
Deutsche Börse AG. We would like to acknowledge fruitful dis-
cussions with A. Amici, F. Lillo, R. Mantegna, E. Scalas, and
U. Tartaglino and G. Germano for proofreading.
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